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The magnetic behavior of the molecular nanomagnet Fe4 is very well simulated by a single-spin model
Hamiltonian in a crystal field with S=5. The crystal-field parameters were determined from the inelastic
neutron scattering spectra. Here we show that the quantum effects are crucial to understand the saturation of
the relaxation time observed at very low temperature at variance with the standard master equation result that
leads to an Arrhenius law at any temperature. Very deep downward spikes in correspondence to the anticross-
ing fields are found in the relaxation time vs field at low temperature. We compare our results with those
obtained by previous approaches worked out to fit experimental data on Mn12.
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I. INTRODUCTION

An expanding area of the magnetism concerns the single-
molecule magnets �SMMs� �Ref. 1� with slow relaxation of
the magnetization at low temperature. Many interesting basic
properties as magnetic quantum tunneling �MQT� as well as
possible technical application in quantum computing or mag-
netic storage make the SMMs particularly attractive.

We focus on the tetrairon cluster Fe4�thme�2�dpm�6
�briefly Fe4�2 where thme indicates the triply deprotonated
1,1,1-tris�hydroxylmethyl�ethane H3thme and dpm indicates
the deprotonated dipivaloylmethane Hdpm. The complete
chemical formula of the tetrairon cluster reads
C76H132O18Fe4.

The tetrairon cluster Fe4 is a puzzle for theoretical physi-
cists because the fit with experimental data of inelastic neu-
tron scattering �INS� �Ref. 3� implies the existence of a term
in the crystal-field Hamiltonian that violates the D3 symme-
try of the molecule as deduced by a single-crystal x-ray
study2 performed at T=100 K. The existence of such a
symmetry-violating term may be ascribed to two different
sources:

�i� The x-ray study at T=100 K established that the Fe4
ions of the iron cluster are placed on the vertices and at the
center of an equilateral triangle �D3 symmetry�; however, a
small distortion of the equilateral to isosceles triangle, as
suggested by Carretta et al.3 could violate the D3 symmetry.
Rastelli and Tassi4 proved that a distortion of less than half
degree away from the equilateral symmetry is able to recover
the term used in the fit with INS experiment. The distortion
could be ascribed to a true distortion of the tetrairon cluster
occurring at low temperature or the tolerance of the single-
crystal x-ray study or the use of a powder sample in INS
experiment.

�ii� If all the sources of possible distortion have to be
excluded some not yet identified microscopic mechanism
such as second-order Dzyaloshinshii-Moriya �DM� effects5

might yield an effective term similar to that used by Carretta
et al.3 to fit INS data.

Experimental data in zero field2 show that the relaxation
time of magnetization of the tetrairon cluster Fe4 shows an
Arrhenius law for temperature T�1 K while saturation is
found for T�0.2 K, where thermal activation is negligible
and quantum effects are dominant.

The theoretical approach to the relaxation time of the
magnetization of a SMM is based on the master equation6 in
which the transition probability rates between the magnetic
states are related to the spin-phonon interaction. For tem-
perature high enough only thermal activation is accounted
for7 neglecting quantum tunneling. This approach leads to
the Arrhenius law for the relaxation time vs temperature in
good agreement with the experiment8 on Mn12. On the con-
trary in the very-low-temperature regime quantum effects are
dominant, so that the relaxation time was evaluated by the
Fermi golden rule at zero temperature9 and the order of mag-
nitude of the relaxation time of Mn12 in weak external mag-
netic field was recovered.

Then a generalized master equation10 was proposed in
order to account for the quantum tunneling at finite tempera-
ture. However, an approximation on the time dependence of
the off-diagonal elements of the density matrix to reduce
drastically the number of differential equations restricts the
result to temperatures high enough. This calculation gave a
satisfactory fitting of the experimental data on Mn12 between
T=1.9 and 2.8 K explaining the deep downward spikes of
the relaxation time as a function of the external magnetic
field in correspondence to the fields at which the energy lev-
els of the diagonal part of the crystal-field Hamiltonian cross
each other. In this way the enhanced relaxation rate was cor-
related with the quantum tunneling in presence of spin-
phonon interaction.

Until now an approach to describe the crossover from the
pure quantum behavior in the low-temperature regime to the
thermally activated regime, does not exist. We propose a
generalized master equation �GME� suitable to describe both
the quantum and the thermally activated regimes at any tem-
perature and we use this approach to describe the relaxation
time of the tetrairon cluster Fe4. We have numerically diago-
nalized the crystal-field Hamiltonian in an external magnetic
field and we have accounted for the temperature-dependent
transition probability rates by the Fermi golden rule. The
master equation we propose makes use of the main contribu-
tions to quantum tunneling selected by looking at the zero-
temperature rigorous result.

We have also applied to Fe4 a generalized master equation
formalism similar to that used by Leuenberger and Loss10

�Leuenberger and Loss master equation �LLME�� to evaluate
the relaxation time of Mn12 at temperature high enough.
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Good agreement between GME and LLME results is ob-
tained for temperatures T�2 K. The scenario we find in Fe4
is similar to that experimentally observed and theoretically
investigated in Mn12.

11 An overall decreasing of the relax-
ation time at increasing field is modified near the anticross-
ing fields by the presence of deep downward spikes. While
the relaxation time at zero external field is heavily affected
by both the hyperfine and the dipole fields, this is not the
case at finite external field. For this reason we have consid-
ered the behavior of the tetrairon cluster Fe4 in a nonzero
external magnetic field and we support warmly an experi-
ment to test our theoretical expectation.

II. TRANSITION PROBABILITY RATE

The monocrystal made up of tetrairon cluster Fe4 is well
simulated by an aggregate of noninteracting spins S=5 with
crystal-field Hamiltonian

Hs = Hcf − g�BHzSz, �1�

where Sz is the component of the spin operator along the
easy �z� axis, Hz is the magnetic field component along the
easy axis, g=2 is the Landé g factor, �B is the Bohr magne-
ton, and Hcf is the “zero-field splitting” Hamiltonian3

Hcf = B2
0O2

0 + B4
0O4

0 + B2
2O2

2 + B4
3O4

3, �2�

where Bn
m are anisotropy parameters and On

m are Stevens op-
erator equivalents12

O2
0 = 3Sz

2 − S�S + 1� , �3�

O4
0 = 35Sz

4 − �30S�S + 1� − 25�Sz
2 − 6S�S + 1� + 3�S�S + 1��2,

�4�

O2
2 =

1

2
�S+

2 + S−
2� �5�

with S�=Sx� iSy and

O4
3 =

1

4
�Sz�S+

3 + S−
3� + �S+

3 + S−
3�Sz� . �6�

The anisotropy parameters that give the best fit with both the
inelastic neutron scattering data3 and the hysteresis loop of
the magnetization2 were found to be4 B2

0=−0.216, B4
0=1.16

�10−5, B2
2=0.014 and B4

3=7�10−4 K. The crystal structure
is trigonal with lattice constants a=16.1893 Å and c
=52.172 Å containing six molecules.2

From now on we will label �m�� and �m� the eigenstates
and the eigenvalues of the crystal-field Hamiltonian of Eq.
�1� and �m� and �m the eigenstates and the eigenvalues of the
diagonal part of the crystal-field Hamiltonian obtained from
Eq. �2� with B2

2=B4
3=0. Since B2

2 and B4
3 are small with re-

spect to the easy-axis anisotropy parameter B2
0, it is expected

that �m�� and �m� do not differ very much from �m� and �m,
respectively. This is true over the whole spectrum of mag-
netic fields except very close to the anticrossing fields where
two unperturbed eigenvalues �m and �n degenerate. At the

anticrossing fields the true states �m�� and �n�� are given by
� 1

�2
��m�� �n��.

To get the relaxation time of the SMM Fe4, the monoc-
rystal is initially saturated in a large negative magnetic field,
so that each molecule is in the ground state �−5����−5�. For
instance, for Hz=−2 T the ground state is �−5��=0.999 98�
−5�−6.00�10−3�−3�−3.72�10−3�−2�+¯, where the dots
mean the states �m� with m�−5,−3,−2; the weight of which
is between 4�10−5 and 10−9.

When the magnetic field is suddenly reversed the initial
state is again a state �−5����−5� �for instance, for Hz
=0.05 T one has �−5��=0.999 94�−5�−9.23�10−3�−3�
−6.02�10−3�−2�+¯� but it is no longer the ground state
which is now the state �5����5� �for Hz=0.05 T one has
�5��=0.999 94�5�−8.99�10−3�−3�−5.85�10−3�2�+¯�, so
that the initial state relaxes into the ground state in a time 	
owing to the interaction with lattice vibrations. A crucial role
is played by the spin-phonon interaction Hamiltonian9

Hsp = i	
q,


� �

2MN�q


Vq
�S��cq
 − cq

† � , �7�

where � is the Planck’s constant divided by 2
, the sum is
performed over the wave vectors q of the Brillouin zone and
over the phonon branches 
, N is the number of lattice cells,
M is the mass of a Fe4 molecule, �q
 is the phonon disper-
sion relation of the branch 
, and cq
 and cq


† are the destruc-
tion and creation operators of a phonon of wave vector q
belonging to the branch 
. The spin-phonon potential inter-
action Vq
�S� depends on the phonon variables �q ,
� as well
as on the spin S of the molecule Fe4. The most general form
for a trigonal lattice13 is

Vq
�S� = �A1�q,
� + iA2�q,
��S−
2 + �A1�q,
� − iA2�q,
��S+

2

+ �B1�q,
� + iB2�q,
��
S−,Sz� + �B1�q,
�

− iB2�q,
��
S+,Sz� , �8�

where 
,� means anticommutator and

A1�q,
� =
1

8
g2�qxeq


x − qyeq

y � , �9�

A2�q,
� =
1

8
g2�qxeq


y + qyeq

x � , �10�

B1�q,
� =
1

8
��g3 + g4�qxeq


z + �g3 − g4�qzeq

x � , �11�

B2�q,
� =
1

8
��g3 + g4�qyeq


z + �g3 − g4�qzeq

y � . �12�

The magnetoelastic coupling constants g2 and g3 are con-
nected with the lattice strain while g4 is related to the lattice
rotation;9 eq
 is the polarization vector associated with the
phonon �q ,
�.

The Fermi golden rule for the transition probability rate
from a state �n�N� to a state �m�N��, where n� ,m� are the
labels characterizing the magnetic wave functions and N ,N�
are the labels describing the phonon quantum numbers, reads
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Wm�,n� =
2


�
	

N,N�

��m�N��Hsp�n�N��2pN��EN − EN� + �n� − �m�� ,

�13�

where EN and EN� are the eigenvalues of the phonon Hamil-
tonian and pN is the thermal weight of the initial phonon state
�N�. Using the spin-phonon Hamiltonian �7� one obtains

Wm�,n� =
2


�
	
q,



 �

2MN�q

���m��Vq
�S��n���2

���1 + nq
�����q
 + �m� − �n��

+ nq
����q
 − �m� + �n��� , �14�

where nq
= �e���q
 −1�−1 is the thermal average of the pho-
non occupation number with �= �kBT�−1, where kB is the
Boltzmann constant and T is the absolute temperature. To
perform the sum over 
 and q in Eq. �14� we restrict our-
selves to the three acoustic branches and to the long-
wavelength region of the spectrum. Both restrictions are jus-
tified by the very low temperature at which the experiment
on Fe4 is performed �T�4 K�. Under the hypothesis that the
tetrairon cluster behaves like an isotropic elastic medium in
the long wave length limit, the dispersion relations become
��q
=clq for 
=1 and ��q
=ctq for 
=2,3, where cl and ct
are the sound velocities of longitudinal and transverse
phonons, respectively. Under this assumption Eq. �14� gives

Wm�,n� =
1

96
��4�g2
2

5

 2

cl
5 +

3

ct
5����m��S−

2�n���2 + ��m��S+
2�n���2�

+ �g3
2

5

 2

cl
5 +

3

ct
5� +

g4
2

ct
5����m��
S−,Sz��n���2

+ ��m��
S+,Sz��n���2����m� − �n��3n
 �m� − �n�

kBT
� , �15�

where �=M /Vc is the density and n�x�= �ex−1�−1. Note that
for �m� ��n� it is convenient to make use of the following
identity:

��m� − �n��3n
 �m� − �n�

kBT
� = ��n� − �m��3�1 + n
 �n� − �m�

kBT
�� .

�16�

Since there are no experimental data about the magnetoelas-
tic constants gn and the sound velocity cl and ct appearing in
Eq. �15� we assume g2�g3�g4=g and cl�ct=c so that the
transition probability rate reads

Wm�,n� = Ap�m�,n��n
 �m� − �n�

kBT
� , �17�

where

A =
g2

96
��4c5 �18�

and

p�m�,n�� = ���m��S−
2�n���2 + ��n��S−

2�m���2 + 2��m��
S−,Sz�

��n���2 + 2��n��
S−,Sz��m���2���m� − �n��3. �19�

The coupling constant A=1529 K−3 s−1 is chosen to fit the
relaxation time2 	=1.7�10−6 s at T=4 K and Hz=0 T.

III. RELAXATION TIME AT T=0

From Eqs. �15� and �16� one sees that at T=0 the only
nonvanishing transition probability rates are Wm�,−5� for
which �m� ��−5�. The relaxation time is the inverse of the
sum of all the transition probability rates from the initial
state �−5�� to the states �m��; that is,

	 =
1

	
m�

Wm�,−5�

�20�

Even for magnetic fields far from the anticrossing fields
where �m����m� the replacement of the eigenstates �m�� with
the eigenstates �m� leads to transition probability rates equal
to zero and to an infinite relaxation time because of the na-
ture of the spin-phonon interaction.

For 0�Hz�H1, where H1=0.477 T is the anticrossing
field between the states �4�� and �−5�� corresponding to the
minimum splitting �−5,4=�−5��H1�−�4��H1�, the state �−5�� is
the first excited state, so that the only nonzero transition
probability rate is W5�,−5�; that is,

W5�,−5� = A p�− 5�,5�� . �21�

Note the crucial role played by the nondiagonal terms of the
crystal-field Hamiltonian proportional to B2

2 and B4
3 that

cause a mixing between the states �m�. Indeed neglecting
these terms, the eigenstates of the crystal-field Hamiltonian
reduce to the states �m� and because of the nature of the
spin-phonon coupling �8� the only nonvanishing transition
probability rates are those between nearest levels �Wm�1,m�
and next-nearest levels �Wm�2,m�. This implies that the sys-
tem starting from the state �−5� must overcome the energy
barrier between the states �−5� and �5� to relax into the final
state �5�. This could happen only if the magnetic system
receives energy from the phonon bath, an event impossible at
T=0 K, so that the relaxation time goes to infinity for T
→0. On the contrary the weak mixing entered by B2

2 and B4
3

is sufficient to give a nonzero transition probability rate
W5�,−5� corresponding to a direct quantum tunneling between
states �−5�� and �5�� during which the magnetic system gives
energy to the phonon bath, so that relaxation occurs even for
T→0. For weak magnetic fields �−5� −�5� �10g�BHz, so that
p�−5� ,5���Hz

3 in agreement with the behavior expected9 for
the nanomagnet Mn12.

In Table I we give p�−5� ,m�� for several magnetic fields.
To get the relaxation time one has to sum the elements of
each row, multiply the sum by A=1529 K−3 s−1, and take the
inverse. As one can see from Table I the first column corre-
sponding to p�−5� ,5�� is complete since the ground-state en-
ergy �5� is always below the initial state energy �−5�. The
second column corresponding to p�−5� ,4�� appears at H1
=0.477 T, where also the energy �4� becomes lower than

RELAXATION TIME OF THE NANOMAGNET Fe4 PHYSICAL REVIEW B 79, 104415 �2009�

104415-3



�−5�. At H2=0.959 T, the second anticrossing field, also the
energy �3� becomes lower than �−5�, so that the transition
p�−5� ,3�� appears �third column of Table I�. At each anti-
crossing field a new transition occurs. The columns corre-
sponding to p�−5� ,2��, p�−5� ,1��, and p�−5� ,0�� appear
at H3=1.44, H4=1.93, and H5=2.41 T, respectively. Note
that p�−5� ,5�� is the main contribution for 0�Hz�1 T;
p�−5� ,4�� dominates for 1.1�Hz�1.5 T and p�−5� ,2�� for
2�Hz�2.7 T.

The relaxation time vs field is shown in the semilogarith-
mic plot of Fig. 1. Two main features have to be pointed out:
the large increasing of the relaxation time for Hz→0 and the
deep downward spikes at the anticrossing fields Hz=Hn with
n=5−m and m=4,3 , . . . ,0 ,−1.

The growth of the relaxation time for Hz→0 is a conse-
quence of the fact that p�−5� ,5�� is proportional to ��−5�

−�5��3, where �−5� −�5� ����−5,5�2+ �10g�BHz�2 with
�−5,5 /kB=5.03�10−7 K. For magnetic fields Hz�10−7 T
�g�BHz��−5,5� one has �−5� −�5� �10g�BHz and 	��Hz�−3.
For Hz�10−7 T, however, �−5� −�5� ��−5,5 and 	
���−5,5�−3. In particular 	�0 K,0 T�=9.02�1019 s. Any
attempt to check this pseudodivergence at Hz=0 in the actual

compound is prevented by the existence of local magnetic
fields due to hyperfine and dipole interaction as discussed9

for Mn12. In the tetrairon cluster Fe4 the hyperfine field
should be Hhyp�4�10−5 T since only 2% of the natural
iron has a nuclear spin I=1 /2. From the crystal data2 one
estimates that the dipolar field between two Fe4 molecules is
Hdip�4�10−3 T that is 2 orders of magnitude greater than
the hyperfine field. If we suppose that all six nearest-
neighbor molecules Fe4 have the magnetic moment directed
along the positive z axis, a dipolar field on the order of
Hdip�0.025 T is obtained. This should imply that at zero
external field a transition to an ordered phase is expected at
Tdip�0.16 K, which is not observed experimentally. So we
think that the dipole-dipole interaction between Fe4 mol-
ecules, neglected in our approach, may become dominant for
Hz�0.01 T for which we find 	�0 K,0.01 T�=5.37
�107 s. The relaxation time in zero magnetic field shows a
saturation2 to a value of about 1500 s for T�0.2 K. We
obtain such a value for Hz�0.3 T more than 1 order of
magnitude greater than the expected dipolar field.

The deep downward spikes shown in Fig. 1 at the anti-
crossing fields are originated by the strong mixing of the
states �−5� and �m� at Hn�H5−m appearing in the eigenstate

TABLE I. Transitions p�−5� ,m���K3�.

Hz�T� p�−5� ,5�� p�−5� ,4�� p�−5� ,3�� p�−5� ,2�� p�−5� ,1�� p�−5� ,0��

0.1 1.24�10−8

0.2 1.06�10−7

0.3 4.05�10−7

0.4 1.24�10−6

0.5 6.37�10−6 2.80�10−9

0.6 6.85�10−6 4.85�10−7

0.7 1.74�10−5 3.82�10−6

0.8 5.83�10−5 2.21�10−5

0.9 5.09�10−4 3.07�10−4

1 1.22�10−3 1.61�10−3 7.60�10−7

1.1 1.13�10−4 5.16�10−4 3.14�10−5

1.2 4.01�10−5 8.72�10−4 1.72�10−4

1.3 2.01�10−5 2.97�10−3 6.75�10−4

1.4 3.43�10−5 4.30�10−2 8.69�10−3

1.5 4.60�10−5 3.48�10−2 1.53�10−2 1.55�10−4

1.6 1.68�10−5 6.68�10−3 1.01�10−2 3.76�10−3

1.7 1.62�10−5 3.84�10−3 1.81�10−2 1.99�10−2

1.8 3.22�10−5 3.39�10−3 5.33�10−2 6.87�10−2

1.9 5.13�10−4 6.47�10−3 0.993 0.240

2 1.56�10−4 2.89�10−3 0.130 0.555 1.19�10−3

2.1 1.58�10−4 5.05�10−3 2.68�10−2 1.53 1.34�10−2

2.2 4.19�10−4 1.08�10−2 3.03�10−2 5.11 4.76�10−2

2.3 2.04�10−3 4.06�10−2 0.104 27.4 0.138

2.4 0.267 4.29 10.1 3.80�103 17.9

2.5 6.13�10−3 8.61�10−2 0.172 90.5 2.43 0.175

2.6 1.90�10−3 2.67�10−2 5.17�10−2 28.7 3.59 1.94

2.7 1.16�10−3 2.15�10−2 5.89�10−2 18.8 9.66 8.34

2.8 9.82�10−4 4.78�10−2 0.193 14.6 54.1 26.1
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�−5��. In particular, the mixing concerns the states �−5� and
�4� at H1, �−5� and �3� at H2, and so on. The strong mixing of
the wave functions leads to a large increase in p�−5� ,5�� for
Hz→H1 owing to the term �4�
S− ,Sz��5� in Eq. �19� and for
Hz→H2 owing to the term �3�S−

2�5� in Eq. �19�. Similarly the
strong increase in p�−5� ,4�� for Hz→H2 and Hz→H3 is due
to the terms �3�
S− ,Sz��4� and �2�S−

2�4�, respectively. Similar
considerations can be done for any p�−5� ,m��, so that a sud-
den decrease in the relaxation time is expected around any
anticrossing magnetic fields. In the actual compound we
think that the presence of hyperfine and dipolar field only
spread the resonance about the anticrossing field but the
spikes, possibly reduced, cannot disappear. We hope that a
measure of the relaxation time of Fe4 vs field at low tem-
perature �T�0.2 K� may be done to check our expectation.
Indeed such an experiment was done in Mn12 for T�2 K
where resonance dips were recorded.11

IV. MASTER EQUATION

In this section we propose a GME that accounts for quan-
tum tunneling at finite temperature taking advantage from
the zero-temperature rigorous results of the previous section.
To get the GME we use the master equation formalism6 ac-
cording to which the time evolution of the probability �m��t�
of finding the molecule Fe4 in the level �m�� with energy �m�

at the time t is given by

�̇m� = 	
n�

Wm�,n��n� − �m�	
n�

Wn�,m�. �22�

As one can see from Eq. �22� the probability �m� increases in
time owing to transitions from all other states �n�� to �m�� and
decreases owing to transition from the state �m�� to all other
states �n��. All transitions are ruled by the transition probabil-
ity rates Wn�,m� given by Eq. �17�. The standard master equa-
tion �SME� �Ref. 7� replaces �m�� with �m� and �m� with �m:
the replacement of the eigenvalues and the eigenstates of the
crystal-field Hamiltonian with the eigenvalues and the eigen-

states of its diagonal part is justified by the fact that the
nondiagonal terms are generally much smaller than the diag-
onal ones. Neglecting terms proportional to B2

2 and B4
3 in Eq.

�2� the master Eq. �22� becomes

�̇m = 	
n

�Wm,n�n − �m	
n

�Wn,m, �23�

where m=−5, . . . ,5. The initial conditions are �m�0�=0 for
each m�−5 and �−5�0�=1. The prime on the sum means that
n is restricted to n=m�1, m�2. Indeed the nature of the
spin-phonon interaction �8� makes all transition probability
rates zero except

Wm�1,m = 2A�2m � 1�2�5 � m��5 � m + 1���m�1

− �m�3n
 �m�1 − �m

kBT
� �24�

and

Wm�2,m = A�5 � m��5 � m − 1��5 � m + 1��5 � m + 2���m�2

− �m�3n
 �m�2 − �m

kBT
� . �25�

The detailed set of 2S+1=11 equations is given in the Ap-
pendix A. The ansatz

�m�t� = 	
l=1

2S+1

rm
�l�e
lt �26�

reduces the solution of the system of differential equations
�23� to finding the 2S+1=11 eigenvalues of the matrix W�0�

given by Eq. �A23�. All the eigenvalues of the matrix W�0�

are real and negative except one, say 
11, which is zero. This
is consistent with the fact that for t→� all probabilities �m�t�
must converge to their statistical equilibrium values,

�m�t → �� = rm
�11� =

e−��m

	
n

e−��n
. �27�

The overall relaxation time is given by the reciprocal of the
smallest �in magnitude� nonzero eigenvalue, say 
10; that is,

	 =
1

�
10�
. �28�

At fixed magnetic field we see that the relaxation time vs
temperature satisfies an Arrhenius law of the type

	�T,Hz� = 	0�Hz�eU�Hz�/T, �29�

where U�Hz� is on the order of the energy barrier between
the states ��5�. From now on the energies are measured in
kelvin. We find 	0�Hz�= �3.1�0.1��10−8, �4.3�0.2��10−8,
and �6.0�0.3��10−8 s and U�Hz�=16.32�0.03,
15.41�0.05, and 14.06�0.05 K for Hz=0.05, 0.2, and 0.4
T, respectively. Note that a fit of the data2 with the Arrhenius
law for T�1.9 K and Hz=0 gives 	0= �3.4�0.2��10−8 s
and U=15.6�0.2 K. The Arrhenius law does not fit the ex-
perimental data for T�1 K and the relaxation time is found
to saturate for T�0.2 K owing to quantum tunneling2 in the
presence of spin-phonon interaction.

FIG. 1. Semilogarithmic plot of the relaxation time 	 at T
=0 K vs magnetic field for crystal-field parameters B2

0=−0.216 K,
B4

0=1.16�10−5 K, B2
2=0.014 K, and B4

3=7�10−4 K.
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To account for quantum corrections at very low tempera-
ture we start with the master equation �22� keeping the most
important quantum contribution deduced by Table I and Eq.
�17�. Since the transition probability rates Wm��1,m� and
Wm��2,m� are the most important ones at finite temperature
and they do not differ very much from the corresponding
Wm�1,m and Wm�2,m we simply add the appropriate quantum
transition probability rates Wm�,−5� and W−5�,m� to the SME of
Eq. �23� leading to a GME. The selection of the transition
probability rates is a consequence of the initial conditions of
the experiment where each molecule is prepared in the state
�−5�� because of the application of a large negative magnetic
field. Details of calculations are given in the Appendix B.

The relaxation time is the reciprocal of the smallest �in
magnitude� nonzero eigenvalue 
10 of the matrix W�n� with
n=1,2 , . . . ,6 given in Appendix B. Figure 2 shows the re-
laxation time vs temperature for Hz=0.05 T obtained from
W�1�. As one can see the relaxation time follows an Arrhenius
law for T�0.6 K �	=3.1�10−8e16.3/T s� and saturates to
the value 	=4.272�105 s for T→0.

In Figs. 3–5 the relaxation time vs field is shown for T
=0.6, 1, and 2 K, respectively. Full circles are obtained from

the standard master equation corresponding to W�0� �Appen-
dix A�; �red� squares are obtained from W�1��0�Hz�1 T�,
where the quantum effect p�−5� ,5�� is taken into account
�see Appendix B�. For 1�Hz�1.6 T we see from Table I
that the dominant quantum contribution comes from
p�−5� ,4�� and the matrix W�2� is used to draw the �blue�
diamonds. In the same way �green� up triangles �1.6�Hz
�2 T�, �cyan� down triangle �2�Hz�2.7 T�, and �ma-
genta� stars �Hz�2.7 T� are obtained accounting for
p�−5� ,3��, p�−5� ,2��, and p�−5� ,1�� and making use of ma-
trices W�3�, W�4�, and W�5�, respectively. The main discrepan-
cies between the standard and quantum results are confined
close to the anticrossing fields where the deep spikes found
at T=0 K �see Fig. 1� are only slightly reduced. No trace of

1 2 3 4 5
1�T�K�1�

-10

-5

5

10

ln�Τ�Τu�

FIG. 2. Semilogarithmic plot of the relaxation time 	 �s� and
	u=1 s for Hz=0.05 T vs the reciprocal of the temperature 1 /T
�K−1� for A=1529 K−3 s−1.

FIG. 3. �Color online� Semilogarithmic plot of the relaxation
time 	 at T=0.6 K vs magnetic field. Full �black� circles: SME;
�red� squares: GME with p�−5� ,5��; �blue� diamonds: GME with
p�−5� ,4��; �green� up triangles: GME with p�−5� ,3��; �cyan� down
triangles: GME with p�−5� ,2��; and �magenta� stars: GME with
p�−5� ,1��.

FIG. 4. �Color online� Semilogarithmic plot of the relaxation
time 	 at T=1 K vs magnetic field. Full �black� circles: SME; �red�
squares: GME with p�−5� ,5��; �blue� diamonds: GME with
p�−5� ,4��; �green� up triangles: GME master with p�−5� ,3��;
�cyan� down triangles: GME with p�−5� ,2��; and �magenta� stars:
GME with p�−5� ,1��.

FIG. 5. �Color online� Semilogarithmic plot of the relaxation
time 	 at T=2 K vs magnetic field. Full �black� circles: SME; �red�
squares: GME with p�−5� ,5��; �blue� diamonds: GME with
p�−5� ,4��; �green� up triangles: GME with p�−5� ,3��; �cyan�
down-triangles: GME with p�−5� ,2��; and �magenta� stars: GME
with p�−5� ,1��.
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the pseudodivergence for Hz→0 is obtained at variance with
the zero-temperature result.

As one can see that at increasing temperature the relax-
ation time decreases and the width of the downward spikes
shrinks, so that for temperature T�2 K only the spikes cor-
responding to the anticrossing fields H5 and H6 could be
observed experimentally. For higher temperatures the ther-
mally activated relaxation dominates the quantum tunneling
effects.

For weak magnetic field and very low temperature, we are
able to give an analytical expression for the total transition
probability rate Wtot. Indeed the leading terms that contribute
to the depletion of the eigenstate �−5�� come from the tran-
sitions to the states �5�� and �−4��; that is,

Wtot � W5�,−5� + W−4�,−5�, �30�

where W5�,−5� �Ap�−5� ,5�� is small �see Table I� but finite,
while

W−4�,−5� � W−4,−5 = 1.62 � 103A�5.77

− 1.34Hz�3n
5.77 − 1.34Hz

T
� �31�

goes to zero for T→0 owing to the occupation number. In
Eq. �31� the energy is measured in kelvin and g�B /kB is
replaced with its value 1.34 K/T, so that the magnetic field
Hz is measured in tesla. Note that the prefactor p�−5,−4� is
several orders of magnitude greater than p�−5� ,5��. For in-
stance, for Hz=0.05 T we have

Wtot � A�1.53 � 10−9 + 3.01 � 105 n
5.71

T
�� . �32�

Defining a crossover temperature T0 between the quantum
regime and the thermally activated one �where the relaxation
time follows an Arrhenius law� as the temperature at which
the two contributions are comparable, Eq. �32� gives T0
�0.17 K in good agreement with the crossover temperature
of the experiment.2

To get the relaxation time of Mn12 for T�1 K Leuen-
berger and Loss10 proposed a different generalized master
equation �LLME� in which phonon-induced spin transitions
between levels �m and �m�1 and between �m and �m�2 as well
as resonant tunneling caused by the nondiagonal part of the
crystal-field Hamiltonian are taken into account. The LLME
reads

�̇m =
i

�
�m���,Hcf��m� + 	

n
�Wm,n�n − �m	

n
�Wn,m, �33�

where �,� is the commutator that accounts for quantum ef-
fects. A degenerate-level perturbation theory is applied to a
suitable order to give a nonzero splitting between the two
unperturbed levels with the same energy at the anticrossing
field. A projection of the crystal-field Hamiltonian into the
subspace of these two levels is then performed, so that the
number of the off-diagonal elements generated by the com-
mutation rules is drastically reduced. We apply the LLME to
the tetrairon cluster Fe4 restricting to �−5,m and �m,−5, where
�−5� and �m� are the crossing states at the field Hn�H5−m,

and using an effective Hamiltonian as illustrated in the Ap-
pendix B. Taking advantage from the very short time decay-
ing of the off-diagonal elements of the density matrix,10 the
LLME is obtained from the GME by replacing both W−5�,m�

and Wm�,−5� appearing in GME with �−5
m , where

�−5
m = 
�−5,m

�
�2 	n

� �Wn,m + Wn,−5�

�	n
� �Wn,m + Wn,−5��2

+ � 2g�BHz

� �5 + m��2 .

�34�

Note that g�B /�=1.76�1011 �T s�−1.
In Figs. 6–8 we show the relaxation time obtained from

FIG. 6. �Color online� Semilogarithmic plot of the relaxation
time 	 at T=0.6 K vs magnetic field. Full �black� circles: SME;
�red� squares: LLME with �−5

5 ; �blue� diamonds: LLME with �−5
4 ;

�green� up triangles: LLME with �−5
3 ; �cyan� down triangles: LLME

with �−5
2 ; �magenta� stars: LLME with �−5

1 ; and open circles:
LLME with �−5

0 .

FIG. 7. �Color online� Semilogarithmic plot of the relaxation
time 	 at T=1 K vs magnetic field. Full �black� circles: SME; �red�
squares: LLME with �−5

5 ; �blue� diamonds: LLME with �−5
4 ;

�green� up triangles: LLME with �−5
3 ; �cyan� down triangles: LLME

with �−5
2 ; �magenta� stars: LLME with �−5

1 ; and open circles:
LLME with �−5

0 .
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the LLME of the Appendix B for T=0.6, 1, and 2 K, respec-
tively. The SME result is shown for comparison using
�black� full circles. The �red� squares, �blue� diamonds,
�green� up triangles, �cyan� down triangles, �magenta� stars,
and open circles are obtained from the LLME with �−5

5 , �−5
4 ,

�−5
3 , �−5

2 , �−5
1 , and �−5

0 , respectively.
Comparing Figs. 3 and 6, Figs. 4 and 7, and Figs. 5 and 8,

an overall good agreement between the results obtained from
the GME and LLME is seen. Spikes in correspondence of the
anticrossing fields are found in both the GME and LLME.
Quantitatively the spikes obtained from the GME are deeper
than those obtained from the LLME. The main discrepancy
is found at Hz=0, where the LLME leads to a downward
spike for T=0.6 and 1 K, whereas in the GME no spike at all
is found at Hz=0. This can be explained noticing that �−5

5 at
low temperature and zero field is given by

�−5
5 � 
�−5,5

�
�2 1

2W4,5
� 5.31e5.77/T s−1, �35�

so that �−5
5 →� for T→0 and the relaxation time goes to

zero. This seems to be an artifact of the approximation. In-
deed for T→0 but Hz�0 one has

�−5
5 � 
�−5,5

�
�2 W4,5

2� 10g�BHz

� �2 � 3.34 � 10−7e− 5.77
T

Hz
2 s−1,

�36�

so that �−5
5 →0 for T→0 leading to a divergent relaxation

time. Such a result does not recover the quantum result ac-
cording to which the relaxation time is finite at T=0 K. This
inconvenience is not found for the other anticrossing fields.
For instance at Hz=H1 and low temperature �−5

4 saturates to
the value

�−5
4 � 
�−5,4

�
�2 1

W5,4
� 102 s−1, �37�

so that 	�10−2 s. This saturation value seems to have been
reached at T=0.6 K as shown in Fig. 6. For comparison the
transition probability rate obtained directly from Eq. �21� is
W5�,−5� =3.8�108 s−1, so that 	�2.7�10−9 s while at T
=0.6, 1, and 2 K the relaxation time is 	�1.2–1.5
�10−8 s.

V. SUMMARY AND CONCLUSIONS

A theory that gives both the saturation of the relaxation
time of the magnetization at very low temperature and the
Arrhenius law at higher temperature has been formulated. A
crucial role is played by the use of the eigenstates �m�� of the
crystal-field Hamiltonian instead of the eigenstates �m� of its
diagonal part in the evaluation of the transition probability
rates induced by the spin-phonon interaction. The use of the
exact eigenstates allows us to obtain finite transition prob-
ability rates for T→0 owing to quantum tunneling. More-
over the master equation written in term of density-matrix
elements on the basis �m�� seems to be a very good starting
point to obtain the relaxation time at finite temperature. An
investigation of the transition probability rate at T=0 K al-
lows us to simplify considerably the problem keeping
only the dominant transition probability rate related to
p�−5� ,m��, with the choice of m� suggested by Table I. The
choice of the main transition probability rate leads to a gen-
eralized master equation �GME� that recovers both the satu-
ration of the relaxation time at low temperature and the
Arrhenius law at higher temperature in agreement with the
experiment on Fe4. Also the crossover temperature between
the two regimes is found to be in very good agreement with
the experiment. The relaxation time versus field at T=0
shows deep downward spikes close to the anticrossing fields
�see Fig. 1�, a sign of the quantum tunneling at zero tempera-
ture. These spikes are present also at finite temperature as
shown in Figs. 3–6. A problem arises around Hz=0 since the
existence of hyperfine �weak in Fe4� and dipolar fields pre-
vents any check of the present theory for Hz�0.01 T where
the saturation value of the relaxation time, however, is orders
of magnitude greater than that measured at Hz=0. Compari-
son between the GME and the generalized master equation
proposed by Leuenberger and Loss10 �LLME� to explain the
field-dependent relaxation time of the magnetization in Mn12
for T�2 K gives a good qualitative agreement except for
Hz�0 as one can see comparing Figs. 3 and 4 with Figs. 6
and 7, respectively. For temperature T�2 K the discrepancy
at Hz�0 disappears as shown in Figs. 5 and 8. The quanti-
tative agreement is not so good at the anticrossing fields. In
any case the effect of the local fields should reduce and
spread these resonances, so that quite similar quantitative
values might be found in both theories. According to GME
results the experimental check of the spikes at the anticross-
ing fields on the actual compound Fe4 should be easier at
temperature lower than T�0.6 K.

FIG. 8. �Color online� Semilogarithmic plot of the relaxation
time 	 at T=2 K vs magnetic field. Full �black� circles: SME; �red�
squares: LLME with �−5

5 ; �blue� diamonds: LLME with �−5
4 ;

�green� up triangles: LLME with �−5
3 ; �cyan� down triangles: LLME

with �−5
2 ; �magenta� stars: LLME with �−5

1 ; and open circles ���:
LLME with �−5

0 .
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APPENDIX A: STANDARD MASTER EQUATIONS

In this appendix we give the explicit form of the master
equations �23� for Fe4�S=5�. The crystal-field parameters are
B2

0=−0.216, B4
0=1.16�10−5 K, and g�B /kB=1.34 K /T.

The eleven master equations are

�̇−5 = W−5,−4�−4 + W−5,−3�−3 − �W−4,−5 + W−3,−5��−5,

�A1�

�̇−4 = W−4,−5�−5 + W−4,−3�−3 + W−4,−2�−2 − �W−5,−4 + W−3,−4

+ W−2,−4��−4, �A2�

�̇−3 = W−3,−5�−5 + W−3,−4�−4 + W−3,−2�−2 + W−3,−1�−1

− �W−5,−3 + W−4,−3 + W−2,−3 + W−1,−3��−3, �A3�

�̇−2 = W−2,−4�−4 + W−2,−3�−3 + W−2,−1�−1 + W−2,0�0 − �W−4,−2

+ W−3,−2 + W−1,−2 + W0,−2��−2, �A4�

�̇−1 = W−1,−3�−3 + W−1,−2�−2 + W−1,0�0 + W−1,1�1 − �W−3,−1

+ W−2,−1 + W0,−1 + W1,−1��−1, �A5�

�̇0 = W0,−2�−2 + W0,−1�−1 + W0,1�1 + W0,2�2 − �W−2,0 + W−1,0

+ W1,0 + W2,0��0, �A6�

�̇1 = W1,−1�−1 + W1,0�0 + W1,2�2 + W1,3�3 − �W−1,1 + W0,1

+ W2,1 + W3,1��1, �A7�

�̇2 = W2,0�0 + W2,1�1 + W2,3�3 + W2,4�4 − �W0,2 + W1,2 + W3,2

+ W4,2��2, �A8�

�̇3 = W3,1�1 + W3,2�2 + W3,4�4 + W3,5�5 − �W1,3 + W2,3 + W4,3

+ W5,3��3, �A9�

�̇4 = W4,2�2 + W4,3�3 + W4,5�5 − �W2,4 + W3,4 + W5,4��4,

�A10�

�̇5 = W5,3�3 + W5,4�4 − �W3,5 + W4,5��5, �A11�

where

W−5,−4 = 1.62 � 103A�5.77 − 1.34Hz�3�1

+ n
5.77 − 1.34Hz

T
�� , �A12�

W−5,−3 = 180A�10.3 − 2.68Hz�3�1 + n
10.3 − 2.68Hz

T
�� ,

�A13�

W−4,−3 = 1.76 � 103A�4.54 − 1.34Hz�3�1

+ n
4.54 − 1.34Hz

T
�� , �A14�

W−4,−2 = 432A�7.80 − 2.68Hz�3�1 + n
7.80 − 2.68Hz

T
�� ,

�A15�

W−3,−2 = 1.20 � 103A�3.26 − 1.34Hz�3

��1 + n
3.26 − 1.34Hz

T
�� , �A16�

W−3,−1 = 672A�5.23 − 2.68Hz�3�1 + n
5.23 − 2.68Hz

T
�� ,

�A17�

W−2,−1 = 504A�1.97 − 1.34Hz�3�1 + n
1.97 − 1.34Hz

T
�� ,

�A18�

W−2,0 = 840A�2.63 − 2.68Hz�3�1 + n
2.63 − 2.68Hz

T
�� ,

�A19�

W−1,0 = 60A�0.658 − 1.34Hz�3�1 + n
0.658 − 1.34Hz

T
�� ,

�A20�

W1,−1 = 900A�2.68Hz�3�1 + n
2.68Hz

T
�� �A21�

with n�x�= �ex−1�−1, A=1529 K−3 s−1, T in kelvin, and Hz in
tesla. Wm,n are obtained from Wn,m by replacing 1+n�x� with
n�x� and Wm,n are obtained from W−m,−n by replacing Hz with
−Hz. The ansatz

�m�t� = 	
l=1

11

rm
�l�e
lt �A22�

reduces the solution of the system of differential equations
�23� to an eigenvalue problem

W�0� · rl = 
lr
l, �A23�

where the nonzero elements of the tridiagonal matrix W�0�

are given by

W1,1
�0� = − W−4,−5 − W−3,−5, W1,2

�0� = W−5,−4, W1,3
�0� = W−5,−3,

�A24�

W2,1
�0� = W−4,−5, W2,2

�0� = − W−5,−4 − W−3,−4 − W−2,−4,

W2,3
�0� = W−4,−3, W2,4

�0� = W−4,−2, �A25�
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W3,1
�0� = W−3,−5, W3,2

�0� = W−3,−4,

W3,3
�0� = − W−5,−3 − W−4,−3 − W−2,−3 − W−1,−3,

W3,4
�0� = W−3,−2, W3,5

�0� = W−3,−1, �A26�

W4,2
�0� = W−2,−4, W4,3

�0� = W−2,−3,

W4,4
�0� = − W−4,−2 − W−3,−2 − W−1,−2 − W0,−2,

W4,5
�0� = W−2,−1, W4,6

�0� = W−2,0, �A27�

W5,3
�0� = W−1,−3, W5,4

�0� = W−1,−2,

W5,5
�0� = − W−3,−1 − W−2,−1 − W0,−1 − W1,−1,

W5,6
�0� = W−1,0, W5,7

�0� = W−1,1, �A28�

W6,4
�0� = W0,−2, W6,5

�0� = W0,−1,

W6,6
�0� = − W−2,0 − W−1,0 − W1,0 − W2,0,

W6,7
�0� = W0,1, W6,8

�0� = W0,2, �A29�

W7,5
�0� = W1,−1, W7,6

�0� = W1,0,

W7,7
�0� = − W−1,1 − W0,1 − W2,1 − W3,1,

W7,8
�0� = W1,2, W7,9

�0� = W1,3, �A30�

W8,6
�0� = W2,0, W8,7

�0� = W2,1,

W8,8
�0� = − W0,2 − W1,2 − W3,2 − W4,2,

W8,9
�0� = W2,3, W8,10

�0� = W2,4, �A31�

W9,7
�0� = W3,1, W9,8

�0� = W3,2,

W9,9
�0� = − W1,3 − W2,3 − W4,3 − W5,3,

W9,10
�0� = W3,4, W9,11

�0� = W3,5, �A32�

W10,8
�0� = W4,2, W10,9

�0� = W4,3,

W10,10
�0� = − W2,4 − W3,4 − W5,4, W10,11

�0� = W4,5, �A33�

W11,9
�0� = W5,3, W11,10

�0� = W5,4, W11,11
�0� = − W3,5 − W4,5,

�A34�

and the eigenvectors are column vectors given by rl

= �r−5
l ,r−4

l , . . . ,r4
l ,r5

l �. Since 	lWl,j
�0�=0 for j=1,2 , . . . ,11, one

of the eigenvalues, say 
11, is zero.

APPENDIX B: GENERALIZED MASTER EQUATIONS
(GME AND LLME)

To get the GME we account for the dominant quantum
contributions coming from the transition probability rates ne-

glected in the standard approach. As seen from Table I these
contributions differ according to the magnetic field strength.

For 0�Hz�1 T the dominant quantum contribution
comes from p�−5� ,5��, so that the only change concerns Eqs.
�A1� and �A11� that become

�̇−5 = W−5�,5��5 + W−5,−4�−4 + W−5,−3�−3 − �W5�,−5� + W−4,−5

+ W−3,−5��−5, �B1�

�̇5 = W5�,−5��−5 + W5,3�3 + W5,4�4 − �W−5�,5� + W3,5 + W4,5��5,

�B2�

where

W5�,−5� = Ap�− 5�,5���1 + n
 �−5� − �5�

T
�� �B3�

and

W−5�,5� = Ap�− 5�,5��n
 �−5� − �5�

T
� . �B4�

The solution of the system is reduced to the evaluation of the
eigenvalues and eigenvectors of the matrix W�1� whose ele-
ments are the same as those of the matrix W�0� except

W1,1
�1� = − W−4,−5 − W−3,−5 − W5�,−5�, W1,11

�1� = W−5�,5�

�B5�

and

W11,1
�1� = W5�,−5�, W11,11

�1� = − W3,5 − W4,5 − W−5�,5�.

�B6�

For 1�Hz�1.6 T the dominant quantum contribution is
p�−5� ,4��; only Eqs. �A1� and �A10� are to be changed lead-
ing to the matrix W�2� which has the same elements as W�0�

except

W1,1
�2� = − W−4,−5 − W−3,−5 − W4�,−5�, W1,10

�2� = W−5�,4�

�B7�

and

W10,1
�2� = W4�,−5�, W10,10

�2� = − W2,4 − W3,4 − W5,4 − W−5�,4�.

�B8�

For 1.6�Hz�2 T the dominant quantum contribution is
p�−5� ,3��; only Eqs. �A1� and �A9� are to be changed lead-
ing to the matrix W�3� which has the same elements as W�0�

except

W1,1
�3� = − W−4,−5 − W−3,−5 − W3�,−5�, W1,9

�3� = W−5�,3�

�B9�

and

W9,1
�3� = W3�,−5�, W9,9

�3� = − W1,3 − W2,3 − W4,3 − W5,3

− W−5�,3�. �B10�

For 2�Hz�2.75 T the dominant quantum contribution is
p�−5� ,2��; only Eqs. �A1� and �A8� are to be changed lead-
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ing to the matrix W�4� which has the same elements as W�0�

except

W1,1
�4� = − W−4,−5 − W−3,−5 − W2�,−5�, W1,8

�4� = W−5�,2�

�B11�

and

W8,1
�4� = W2�,−5�,

W8,8
�4� = − W0,2 − W1,2 − W3,2 − W4,2 − W−5�,2�. �B12�

For 2.75�Hz�3 T the dominant quantum contribution is
p�−5� ,1��; only Eqs. �A1� and �A7� are to be changed lead-
ing to the matrix W�5� which has the same elements as W�0�

except

W1,1
�5� = − W−4,−5 − W−3,−5 − W1�,−5�, W1,7

�5� = W−5�,1�

�B13�

and

W7,1
�5� = W1�,−5�,

W7,7
�5� = − W−1,1 − W0,1 − W2,1 − W3,1 − W−5�,1�. �B14�

Finally for Hz�3 T the dominant quantum contribution is
p�−5� ,0��; only Eqs. �A1� and �A6� are to be changed lead-
ing to the matrix W�6� which has the same elements as W�0�

except

W1,1
�6� = − W−4,−5 − W−3,−5 − W0�,−5�, W1,6

�6� = W−5�,0�

�B15�

and

W6,1
�6� = W0�,−5�,

W6,6
�6� = − W−2,0 − W−1,0 − W1,0 − W2,0 − W−5�,0�. �B16�

Since 	lWl,j
�n�=0 for j=1,2 , . . . ,11, one of the eigenvalues of

each matrix W�n� with n=1,2 , . . . ,6 is zero.
A different generalized master equation �LLME� was pro-

posed by Leuenberger and Loss.10 They replace m� with m in
the phonon-induced transition probability rate treating quan-
tum tunneling in a perturbative way. In the LLME the differ-
ential equations for the diagonal and off-diagonal elements
of the density matrix are

�̇m =
i

�
�m���,Hcf��m� + 	

n

Wm,n�n − �m	
n

Wn,m

�B17�

and

�̇m,m� =
i

�
�m���,Hcf��m�� −

1

2
�m,m�	

n

�Wn,m + Wn,m�� ,

�B18�

respectively, with m ,m�=−5, . . . ,5 and m�m�. The off-
diagonal elements are originated from the choice of the

eigenstates �m� that are not eigenstates of the crystal-field
Hamiltonian �1�. The systems �B17� and �B18� have 2S+1
=11 and 2S�2S+1�=110 equations, respectively. This num-
ber is drastically reduced if one assumes10 that the crystal-
field Hamiltonian Hcf may be replaced with its projection on
the two-state system �m� , �m�� corresponding to the two lev-
els of the diagonal part of the Hamiltonian that are degener-
ate at the anticrossing field Hn

�0�. The elements of the pro-
jected Hamiltonian are

�m�Hcf�m� = �m�Hn
�0�� − g�Bm�Hz − Hn

�0�� , �B19�

�m��Hcf�m� = �m�Hcf�m�� =
1

2
�m,m�

�0� �Hn
�0�� , �B20�

where �m,m�
�0� �Hn

�0�� is the splitting between levels �m�Hn
�0��

=�m��Hn
�0�� at the anticrossing field. This splitting is to be

evaluated by means of the time-independent degenerate-level
perturbation theory pushed to a convenient order to give
�m,m�

�0� �0. For the tetrairon cluster Fe4 the perturbation
Hamiltonian is V=B2

2O2
2+B4

3O4
3. For m=−5 and m�=5 �H0

�0�

=0� the chain formula9,10 for the splitting �−5,5
�0� is the sum of

seven contributions: one corresponding to the chain formed
by five potential B2

2O2
2 and the other six contributions coming

from all permutations of two potentials B2
2O2

2 and two poten-
tials B4

3O4
3. This gives �−5,5

�0� =8.83�B2
2�5+5.29

�103�B2
2�2�B4

3�2=5.12�10−7 K. For m=−5 and m�=4
�H1

�0�=0.478 T� one obtains �−5,4
�0� =8.96�102�B2

2�3B4
3+9.21

�103�B4
3�3=4.88�10−6 K. For m=−5 and m�=3 �H2

�0�

=0.959 T� one obtains �−5,3
�0� =53.9�B2

2�4+7.33�103B2
2�B4

3�2

=5.23�10−5 K. For m=−5 and m�=2 �H3
�0�=1.44 T� one

has �−5,2
�0� =1.59�103�B2

2�2B4
3=2.18�10−4 K. For m=−5 and

m�=1 �H4
�0�=1.93 T� one has �−5,1

�0� =98.2�B2
2�3+1.57

�103�B4
3�2=1.04�10−3 K. For m=−5 and m�=0 �H5

�0�

=2.41 T� one has �−5,0
�0� =1.24�103B2

2B4
3=1.21�10−2 K.

A quite similar result is obtained by replacing the crystal-
field Hamiltonian with a two-level effective Hamiltonian4

Heff connecting only the two states that are mixed at the
anticrossing field Hn; that is,

Heff

= ��−5�Hn� + 5g�B�Hz − Hn�
1

2
�−5,m�Hn�

1
2�−5,m�Hn� �m�Hn� − mg�B�Hz − Hn�

�
�B21�

where the energy splitting and anticrossing fields were taken
from the diagonalization of the complete spin Hamiltonian.
In particular, one obtains �−5,5�0�=5.03�10−7 K for Hz=0,
�−5,4=1.46�10−6 K for H1=0.477 T, �−5,3=4.82
�10−5 K for H2=0.959 T, �−5,2=2.18�10−4 K for H3
=1.44 T, �−5,1=5.05�10−4 K for H4=1.93 T, and �−5,0
=1.21�10−2 K for H5=2.41 T. As one can see the agree-
ment between these two approaches is very good as for the
values of the anticrossing fields. Not so good is the agree-
ment for the splittings even though the order of magnitude is
recovered by the perturbation result. The overestimate is out-
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standing for �−5,4 and �−5,1. We use the effective Hamil-
tonian to write the LLME.

For magnetic field Hz�0 the two-state subspace is
spanned by �−5� and �5�, so that Eq. �B17� gives

�̇−5 =
i

2�
�−5,5��−5,5 − �5,−5� + W−5,−4�−4 + W−5,−3�−3

− �W−4,−5 + W−3,−5��−5, �B22�

�̇5 =
i

2�
�−5,5��5,−5 − �−5,5� + W5,4�4 + W5,3�3 − �W4,5

+ W3,5��5, �B23�

while the equations for �̇n with n�−5,5 are given by Eqs.
�A2�–�A10�. Analogously Eq. �B18� gives

�̇5,−5 =
i

�
�10g�BHz��5,−5 +

i

2�
�−5,5��5 − �−5� −

1

2
�W3,5

+ W4,5 + W−3,−5 + W−4,−5��5,−5 �B24�

and

�̇−5,5 = −
i

�
�10g�BHz��−5,5 +

i

2�
�−5,5��−5 − �5� −

1

2
�W3,5

+ W4,5 + W−3,−5 + W−4,−5��−5,5. �B25�

Under the assumption10 that the overall relaxation time is
much longer than the time of decaying of the off-diagonal
elements one can neglect their time dependence and take the
solutions of Eqs. �B24� and �B25� for �̇−5,5= �̇5,−5=0. So do-
ing one obtains

�5,−5 =
i

2��−5,5��5 − �−5�
1
2 �W3,5 + W4,5 + W−3,−5 + W−4,−5� − i

� �10g�BHz�

�B26�

and �−5,5 is the complex conjugate of �5,−5. Replacing the
off-diagonal terms obtained in Eqs. �B22� and �B23� one
obtains

�̇−5 = �−5
5 �5 + W−5,−4�−4 + W−5,−3�−3 − ��−5

5 + W−4,−5

+ W−3,−5��−5 �B27�

and

�̇5 = �−5
5 �−5 + W5,4�4 + W5,3�3 − ��−5

5 + W4,5 + W3,5��5,

�B28�

where

�−5
5 = 
�−5,5

�
�2 W3,5 + W4,5 + W−3,−5 + W−4,−5

�W3,5 + W4,5 + W−3,−5 + W−4,−5�2 + � 20g�BHz

� �2 .

�B29�

Note that Eqs. �B27� and �B28� reduce to Eqs. �B1� and �B2�
if one replaces both W−5�,5� and W5�,−5� with �−5

5 . In this way
we obtain directly from Eqs. �B5� and �B6� the matrix W�1�

and use the same procedure illustrated in the Appendix A to
find the relaxation time.

For Hz�H1 the crystal-field Hamiltonian is projected on
the two-state subspace �−5� , �4� and we obtain the matrix
W�2� by replacing both W−5�,4� and W4�,−5� in Eqs. �B7� and
�B8� with �−5

4 , where

�−5
4 = 
�−5,4

�
�2 W2,4 + W3,4 + W5,4 + W−3,−5 + W−4,−5

�W2,4 + W3,4 + W5,4 + W−3,−5 + W−4,−5�2 + �18g�B�Hz − H1�
�

�2 . �B30�

For Hz�H2 the matrix W�3� is obtained by replacing both W−5�,3� and W3�,−5� in Eqs. �B9� and �B10� with �−5
3 , where

�−5
3 = 
�−5,3

�
�2 W1,3 + W2,3 + W4,3 + W5,3 + W−3,−5 + W−4,−5

�W1,3 + W2,3 + W4,3 + W5,3 + W−3,−5 + W−4,−5�2 + �16g�B�Hz − H2�
�

�2 . �B31�

For Hz�H3 the matrix W�4� is obtained by replacing both W−5�,2� and W2�,−5� in Eqs. �B11� and �B12� with �−5
2 , where

�−5
2 = 
�−5,2

�
�2 W0,2 + W1,2 + W3,2 + W4,2 + W−3,−5 + W−4,−5

�W0,2 + W1,2 + W3,2 + W4,2 + W−3,−5 + W−4,−5�2 + �14g�B�Hz − H3�
�

�2 . �B32�

For Hz�H4 the matrix W�5� is obtained by replacing both W−5�,1� and W1�,−5� in Eqs. �B13� and �B14� with �−5
1 , where

�−5
1 = 
�−5,1

�
�2 W−1,1 + W0,1 + W2,1 + W3,1 + W−3,−5 + W−4,−5

�W−1,1 + W0,1 + W2,1 + W3,1 + W−3,−5 + W−4,−5�2 + �12g�B�Hz − H4�
�

�2 . �B33�

For Hz�H5 the matrix W�6� is obtained by replacing both W−5�,0� and W0�,−5� in Eqs. �B15� and �B16� with �−5
0 , where
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�−5
0 = 
�−5,0

�
�2 W−2,0 + W−1,0 + W1,0 + W2,0 + W−3,−5 + W−4,−5

�W−1,1 + W0,1 + W2,1 + W3,1 + W−3,−5 + W−4,−5�2 + �10g�B�Hz − H5�
�

�2 . �B34�
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